Name: _____

Chapter 6 Study Guide

6.2 Analytical Method of Vector Addition

Adding Perpendicular Vectors

When two vectors are ______, the vector diagram produces a right triangle, in which the resultant vector is the ______ of the triangle. In the diagram below, an airplane flying east at 125 km/h is affected by a 25.0-km/h cross wind blowing to the north. The Pythagorean theorem can be used to calculate the ______ of the resultant vector. The equation to be used is ______. The resultant is equal to ______. Trigonometry can be used to calculate the ______ the resultant. The equation used is _______.

125 km/h east

Components of Vectors

Any single vector can be thought of as a(n) ______ of two vectors, called components. Usually the components are chosen to be perpendicular, so that ______ can be used to determine the size of each component. The diagram below shows the path of a football player running 25 m at an angle of 14° with the sideline. Complete the diagram by drawing the two component vectors, using the sideline as the component representing the player's forward progress. The magnitude of this component can be calculated using the ______ of 14°. The sideways components of the players' path can be calculated using the _______ of 14°. The process of finding components of a single vector is called _______.

Adding Vectors at Any Angle

Vector resolution is used when adding vectors that are not ______. Each vector is resolved into ______ components. When three vectors are added, vector resolution produces a total of ______ components. Of these components, ______ are in the horizontal direction and can be added together. The remaining ______ components are in the vertical direction an can be added together. After adding these components, there is only one ______ vector and one ______ vector. Finally, the ______ vector is found using the Pythagorean theorem.