Chapter 5 Study Guide

5.1 Newton's Laws of Motion

Forces		
A force is a or a Because	a force is a vector quanti	ity, it has both
magnitude and Physicists group all for		
, and The w	eakest of the four forces i	is
Charged particles cause the force to be	exerted. The	_ force is the
strongest of the four forces, but only acts over small	distances. The	force is
involved in the radioactive decay of some nuclei. The	is force has been linked	with the
force.		
Newton's First Law of Motion		
Forces acting on an object can be to pre-		
forces acting in one direction are all the		
direction, the net force is zero. According to		
object, the object remains at rest, or moves with	velocity in a	line.
Newton's Second Law of Motion		
If there is a net force on an object, the object will be	_	
amount of acceleration caused depends on the		
the object. Newton's second law can be written as a		
means that acceleration is proportional		
mass. The direction of the force and the direction of	the acceleration are	•
The Unit of Force	1 60	
The unit of force is defined in terms of Newton's		
abbreviated as The amou		nass of
to accelerate at a rate of is equal to one	newton.	
NI A. S. MILLER CONT. A		
Newton's Third Law of Motion	C TPI	
Newton's third law describes pairs of forces called _		
in magnitude and in direc		
downward on a table, the table pushes	against	

5.2 Using Newton's Law

Mass and Weight		
An object's weight is the force acting on the object. The unit used to express		
measurements of weight is the Newton's law can be used to find the		
weight of an object. The acceleration caused by gravity is equal to, and is		
represented by the symbol The equation used for calculating weight is		
According to the equation, an object's weight is proportional to its		
An object's weight may vary from on location to another, because may change from		
one place to another. However, the object's does not change.		
Two Kinds of Mass		
One way to determine mass is to measure the amount of needed to accelerate the		
object. This is called mass. The other way to determine mass is to use a balance to		
compare the effects of force on two objects. This is called mass. In		
experiments, these two determinations of mass have been shown to be		
Friction		
If you push on a object and slide it across a surface, the force of friction will the		
motion. Friction acts in a direction that is to the surface on which the object slides,		
and to the direction in which the object slides friction opposes the		
start of an object's motion and friction opposes continuing the motion when the		
object is already in motion. Of these two forces, friction is greater. The amount of		
friction can be calculated using the equation The constant in the equation is called		
the		
The Net Force Causes Acceleration		
If more than one force acts on an object, the amount of acceleration can be calculated using		
Newton's law. However, before the equation in Newton's law is used. The net		
force, which is the of the forces, must be found. The positive and negative signs on		
the forces are important because they indicate the of the forces.		
The Fall of Bodies in the Air		
Without any air, all objects fall with the same When air is present, a friction-like		
force called the, acts on the object. This force depends on the and		
of the object, the of the air, and the of motion. When this		
force is equal to the force of gravity, the net force on the object is, and the object		
has reached its velocity.		