Chapter 3 Study Guide

Fill in the blanks as you study the chapter.

3.1 How Far and How Fast?

Position and Distance

An object's ______ can be described in terms of its relationship to a reference point. Choosing a reference point establishes a(n) ______ reference. Describing distance does not need a(n) ______ reference. Distance involves only a measurement of ______, and is a(n) ______ quantity. Position involves both ______ and _____, and is a(n) ______ quantity.

Average Velocity

If an object is moving, its position at	one and only one time i	is a(n)	
position. The change in	of an object is its displacement, which is a(n)		
quantity. The average	e velocity of an object is	the change in	
divided by the	over which the	e change occurred. Avera	.ge
velocity is calculated using the equat	ion In th	is equation,	,
which is read as "delta d," stands for	The system	mbol, whi	ch
is read as "delta t," stands for	Average veloc	ity is expressed in a unit	
made up of a(n) unit	divided by a(n)	Different units u	sed
to describe average velocity can be c	hanged from one to ano	ther by the use of	
factors.			

Finding Displacement from Velocity and Time

Displacement can be calculated by using the equation	In this equation,
represents average velocity and	represents the time
interval. If the average velocity of an object is the same at all	, the object is
described as moving at constant, or, velocity.	Constant velocity can be
calculated using the equation	

Position-Time Graphs

A position-time graph is used to show how	depends on	. If
the motion is constant, the data produce a(n) _	line, which means that the	•
relationship between time and position is	•	

The Slope of a Position-Time Graph

On a position-time graph,	the displacement	t is the	separation of two
points. The time interval i	s the	separation. The	e slope of the line is the
ratio of the	_ to the	The	of the line
represents displacement. 7	The	of the line repres	sents the time interval. The
slope of the line represent	s the	of the object.	

3.2 New Meanings for Old Words

Positive and Negative Velocities

Displacements can be ______ or _____, but time intervals are always ______. Displacements to the ______ of the reference point are positive. Displacements to the ______ of the reference point are negative. Speed is the ______ of velocity. Speed is generally shown as positive, but velocity can be ______ or _____.

Instantaneous Velocity

If the motions is not constant, the position-time graph does not produce a(n) ______ line. A straight line can be drawn ______ to the curve at any one point. The ______ of this line is the instantaneous velocity at that point.

Velocity –**Time** Graphs

If the velocity-time graph,	is shown on the horizontal axis and		
is shown o	on the vertical axis. If velo	ocity is constant, the velocity-time	
graph produces a(n)	line that is	to the horizontal axis. If	
velocity is increasing, the	line has a(n)	slope. If velocity is decreasing, the	
line has a(n)		value of any point on the line is	
the instantaneous velocity	at the time. The area und	ler the line on a velocity-time graph is	
equal to the	_ of the object from its or	riginal to its	
at a given	time.		

Relativity of Velocity

Measurements of	or	depend on the observer's frame of
reference. If a person wall	ks slowly toward the ba	ack of a moving train, an observer on the
train would say that veloc	ity and displacement ar	re An observer standing
on the station platform we	ould say that the walker	r's velocity and displacement are
However	when velocities approa	bach the, the frame of
reference does not matter,	and the velocity is	This concept is part of
theory of a	elativity.	