Chapter 2: Study Guide

Fill in the blanks as you study the chapter.

2.1 THE MEASURE OF SCIENCE

The Metric System

In the metric system, units of different sizes are related by_____. The initials ______stand for the International System of Units. The three fundamental units measure the quantities______, and_____. The meter is the SI unit of ______. The second is the SI unit of ______. The kilogram is the SI unit of-.Other units are called derived units because they are______ of fundamental units.

Scientific Notaton

Scientific notation is based on ______ notation. In scientific notation, a measurement is expressed as a number between ______ and _____ multiplied by a whole-number ______ of ten. When numbers are converted to scientific notation, the decimal point is moved until there is one ______ digit to the ______ of the decimal point. The number of places the decimal point is moved is used as the of ten. If the decimal point is moved to the, the exponent becomes larger. If the decimal point is moved to the ______, the exponent becomes smaller.

Prefixes Used with SI Units

SI units are changed by powers of ______ by the use of prefixes. The prefix for one tenth is ______. The prefix for one thousandth is ______. The prefix that changes a unit by one thousand is All metric units use ______ prefixes.

Arithmetic Operations in Scientific Notation

When numbers are in scientific notation, they may be added or subtracted if the numbers have the same ______. After the numbers are added, the exponent is ______. If the powers of ten are not the same, the ______ must be moved, and the ______ must be changed before the numbers can be added. For multiplying numbers in scientific notation, the ______ do not have to be the same. After the numbers are multiplied, the exponents are ______.

2.2 NOT ALL IS CERTAIN

Uncertainties of Measurements

A common source of error in making measurements comes from the ______ at which the instrument is read. Parallax is the apparent change in ______ of an object when it is seen from different ______. Reading instruments at ______ level and ______ reduces error due to parallax.

Accuracy and Precision

Precision is the degree of ______ to which the measurement of a quantity can be _____. The precision of a measuring device is determined by the ______ division on its scale. Accuracy is the extent to which a measured value agrees with the ______ value of a quantity. Accuracy can be affected by changes in the ______ used to make the measurement Uncertainties in measurement affect ______ but not _____.

Significant Digits

In making measurements, there is a limit to the number of ______ that are valid. This limitation is caused by the ______ of the instrument used. The digits that are valid are called ______ digits. The last significant digit in a measurement is a(n) ______, so it is ______. All _____ digits are considered to be significant. All final zeros-the decimal point are significant. Zeros between two other significant digits ______ significant. Zeros used for spacing between significant digits and the decimal point significant.

Operations Using Significant Digits

The result of a mathematical operation with measurements cannot be more precise than the ______ precise measurement. When numbers are added or subtracted, the operation is performed first, and the answer is rounded off to correspond to the ______ value involved. When numbers are multi-plied or divided, the operation is performed first, and then the answer is rounded off to ______ number of significant digits as the factor wish the-number of significant digits. Significant digits are used when calculating with _____, but not when _____.

2.3 DISPLAYING DATA

Graphing Data

When data are analyzed, the variable that is______ is the independent variable. The dependent variables are the ______ of the independent variable. The ______ variable is plotted on the horizontal axis and the ______ variable is plotted on the vertical axis. After the dependent and independent variables have been identified, the ______ of each variable must be determined. It must be determined if the ______ is a valid data point. Each axis should be ______ and ______. Then the ______ are plotted and the is drown. Finally, the graph should be given a(n) ______.

Linear, Quadratic, and Inverse Relationships

The graph of a linear relationship is a(n) ______. The equation for such a relationship is ______. In this equation, m represents the ______ and b represents the ______. When one variable varies directly with the square of the other, the curve is in the shape of a(n) The equation for such a curve is called a(n) ______ equation, and is written as ______. In this equation, k represents a(n) ______. In an inverse relationship, the curve is a(n)

2.4 MANIPULATING EQUATIONS

Solving Equations Using Algebra

In manipulating equations, the relationship must not be ______. If one side of the equation is divided by a variable, the other side of the equation should be ______ by that variable. Any operation performed on one side of the equation must be ______ the operation performed on the other side of the equation. It the equation for density, D = m/V, is solved for m, the correct equation is ______.

Units in Equations

Before mathematical operations are carried out, all terms in the equation must	have
units. When an answer is written, it must include both the numerical	_and the
If a term has several units, they are treated like any other mathematical	